Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Cancer Sci ; 112(6): 2522-2532, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1138103

ABSTRACT

The 2019 novel coronavirus has spread rapidly around the world. Cancer patients seem to be more susceptible to infection and disease deterioration, but the factors affecting the deterioration remain unclear. We aimed to develop an individualized model for prediction of coronavirus disease (COVID-19) deterioration in cancer patients. The clinical data of 276 cancer patients diagnosed with COVID-19 in 33 designated hospitals of Hubei, China from December 21, 2019 to March 18, 2020, were collected and randomly divided into a training and a validation cohort by a ratio of 2:1. Cox stepwise regression analysis was carried out to select prognostic factors. The prediction model was developed in the training cohort. The predictive accuracy of the model was quantified by C-index and time-dependent area under the receiver operating characteristic curve (t-AUC). Internal validation was assessed by the validation cohort. Risk stratification based on the model was carried out. Decision curve analysis (DCA) were used to evaluate the clinical usefulness of the model. We found age, cancer type, computed tomography baseline image features (ground glass opacity and consolidation), laboratory findings (lymphocyte count, serum levels of C-reactive protein, aspartate aminotransferase, direct bilirubin, urea, and d-dimer) were significantly associated with symptomatic deterioration. The C-index of the model was 0.755 in the training cohort and 0.779 in the validation cohort. The t-AUC values were above 0.7 within 8 weeks both in the training and validation cohorts. Patients were divided into two risk groups based on the nomogram: low-risk (total points ≤ 9.98) and high-risk (total points > 9.98) group. The Kaplan-Meier deterioration-free survival of COVID-19 curves presented significant discrimination between the two risk groups in both training and validation cohorts. The model indicated good clinical applicability by DCA curves. This study presents an individualized nomogram model to individually predict the possibility of symptomatic deterioration of COVID-19 in patients with cancer.


Subject(s)
COVID-19/mortality , Neoplasms/virology , Nomograms , Aged , Area Under Curve , China , Decision Support Techniques , Disease Progression , Female , Humans , Male , Middle Aged , Neoplasms/mortality , Precision Medicine , Retrospective Studies , Risk Factors , Survival Analysis
2.
J Med Internet Res ; 22(6): e20239, 2020 06 10.
Article in English | MEDLINE | ID: covidwho-742634

ABSTRACT

BACKGROUND: The coronavirus disease (COVID-19) was discovered in China in December 2019. It has developed into a threatening international public health emergency. With the exception of China, the number of cases continues to increase worldwide. A number of studies about disease diagnosis and treatment have been carried out, and many clinically proven effective results have been achieved. Although information technology can improve the transferring of such knowledge to clinical practice rapidly, data interoperability is still a challenge due to the heterogeneous nature of hospital information systems. This issue becomes even more serious if the knowledge for diagnosis and treatment is updated rapidly as is the case for COVID-19. An open, semantic-sharing, and collaborative-information modeling framework is needed to rapidly develop a shared data model for exchanging data among systems. openEHR is such a framework and is supported by many open software packages that help to promote information sharing and interoperability. OBJECTIVE: This study aims to develop a shared data model based on the openEHR modeling approach to improve the interoperability among systems for the diagnosis and treatment of COVID-19. METHODS: The latest Guideline of COVID-19 Diagnosis and Treatment in China was selected as the knowledge source for modeling. First, the guideline was analyzed and the data items used for diagnosis and treatment, and management were extracted. Second, the data items were classified and further organized into domain concepts with a mind map. Third, searching was executed in the international openEHR Clinical Knowledge Manager (CKM) to find the existing archetypes that could represent the concepts. New archetypes were developed for those concepts that could not be found. Fourth, these archetypes were further organized into a template using Ocean Template Editor. Fifth, a test case of data exchanging between the clinical data repository and clinical decision support system based on the template was conducted to verify the feasibility of the study. RESULTS: A total of 203 data items were extracted from the guideline in China, and 16 domain concepts (16 leaf nodes in the mind map) were organized. There were 22 archetypes used to develop the template for all data items extracted from the guideline. All of them could be found in the CKM and reused directly. The archetypes and templates were reviewed and finally released in a public project within the CKM. The test case showed that the template can facilitate the data exchange and meet the requirements of decision support. CONCLUSIONS: This study has developed the openEHR template for COVID-19 based on the latest guideline from China using openEHR modeling methodology. It represented the capability of the methodology for rapidly modeling and sharing knowledge through reusing the existing archetypes, which is especially useful in a new and fast-changing area such as with COVID-19.


Subject(s)
Coronavirus Infections , Electronic Health Records/standards , Pandemics , Pneumonia, Viral , Practice Guidelines as Topic , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Decision Support Systems, Clinical , Humans , Pneumonia, Viral/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL